Resolvability on Continuous Alphabets

Matthias Frey, Igor Bjelaković and Sławomir Stańczak | Technische Universität Berlin | Supported by the German Research Foundation and the German Federal Ministry of Education and Research
Channel Model and Problem Statement

Symbols

\mathcal{X}: Polish channel input alphabet with Borel σ-algebra \mathcal{F}

\mathcal{Y}: Polish channel output alphabet with Borel σ-algebra \mathcal{G}

K: stochastic kernel from $(\mathcal{X}, \mathcal{F})$ to $(\mathcal{Y}, \mathcal{G})$ defining channel transition

$X \sim Q_X$ \hspace{2cm} $Y \sim Q_Y$

$C \quad X^n$ \hspace{2cm} $Y^n \sim P_{Y^n|C}$

$K \otimes^n$

M distributed uniformly over $\{1, \ldots, \exp(nR)\}$
Channel Model and Problem Statement

Symbols

\(\mathcal{X} \): Polish channel input alphabet with Borel \(\sigma \)-algebra \(\mathcal{F} \)

\(\mathcal{Y} \): Polish channel output alphabet with Borel \(\sigma \)-algebra \(\mathcal{G} \)

\(K \): stochastic kernel from \((\mathcal{X}, \mathcal{F})\) to \((\mathcal{Y}, \mathcal{G})\) defining channel transition

Sequence of codebooks solves resolvability problem if

\[
\| P_{Y^n | C} - Q_{Y^n} \|_{TV} \xrightarrow{n \to \infty} 0
\]
Resolvability and the Wiretap Channel

Distinguishing Security: $\| P^n_{Y_{\text{tap} | M=m} - Q^n_{Y_{\text{tap} | M}} \|_{TV} \xrightarrow{n \to \infty} 0$

- implies both strong secrecy and semantic security
Resolvability and the Wiretap Channel

\[
\begin{array}{c}
X \\
\mathcal{W} \\
Y_{\text{tap}}|X \\
Y_{\text{legit}}
\end{array}
\]

channel resolvability problem

Decoding output

Distinguishing Security: \(\| P_{Y_{\text{tap}}^n|M=m} - Q_{Y_{\text{tap}}^n} \|_{\text{TV}} \xrightarrow{n \to \infty} 0 \)

- implies both strong secrecy and semantic security
Resolvability and the Wiretap Channel

Distinguishing Security: \[\| P_{Y_{\text{tap}}^n | M = m} - Q_{Y_{\text{tap}}^n} \|_{TV} \xrightarrow{n \to \infty} 0 \]

- implies both **strong secrecy** and **semantic security**

Link observed and explored in:
I. Devetak. The private classical capacity and quantum capacity of a quantum channel. Trans. Inf. Theory, 2005

More references and discussion of semantic security and implications in MAC case:
Resolvability Region

Characterization of the resolvability region

Given \(Q \), suppose \(X \) is compact. For each \(A \subseteq Y \), \(x \mapsto K(x, A) \) is a continuous mapping. Then the achievable rates are

\[
\left\{ R \in \mathbb{R} : R \geq \inf_{Q \in G(Q,Y)} I(X;Y) \right\},
\]

where \(G(Q,Y) := \{ Q \in X : Q \text{ induces } Q \text{ through } K, I(X;Y) < \infty \} \).
Resolvability Region

Characterization of the resolvability region

Given Q_Y, suppose

- \mathcal{X} is compact
- For each $A \subseteq \mathcal{Y}$, $x \mapsto K(x, A)$ is a continuous mapping.

Then the achievable rates are

$$\left\{ R \in \mathbb{R} : R \geq \inf_{Q_X \in G(Q_Y)} I(X; Y) \right\},$$

where

$$G(Q_Y) := \{ Q_X : Q_X \text{ induces } Q_Y \text{ through } K, \ I(X; Y) < \infty \}.$$
Direct Part

Theorem

Suppose

- $\mathbb{E}_{Q_{X,Y}} \exp(t \cdot i(X; Y)) < \infty$ for some $t > 0$
- $R > I(X; Y)$

Then there exist $\gamma_1 > 0$ and $\gamma_2 > 0$ such that

$$PC \left(\|P_{Y^n} - Q_Y^n\|_{TV} > \exp(-\gamma_1 n) \right) \leq \exp(-\exp(\gamma_2 n)).$$

for sufficiently large n.
Direct Part

Theorem

Suppose

- $\mathbb{E}_{Q_X, Y} \exp(t \cdot i(X; Y)) < \infty$ for some $t > 0$
- $R > I(X; Y)$

Then there exist $\gamma_1 > 0$ and $\gamma_2 > 0$ such that

$$P_C \left(\| P_{Y^n} |_C - Q_Y^n \|_{TV} > \exp(-\gamma_1 n) \right) \leq \exp(-\exp(\gamma_2 n)),$$

for sufficiently large n.

- Codeword components drawn independently according to Q_X
- Probability of drawing “bad” codebook **doubly exponentially small**.
Direct Part: Proof Sketch (1)

- Typical set: \(\mathcal{T}_\varepsilon := \{(x^n, y^n) : \frac{1}{n} i(x^n; y^n) \leq I(X; Y) + \varepsilon\} \)
Direct Part: Proof Sketch (1)

- Typical set: $\mathcal{T}_\varepsilon := \{(x^n, y^n) : \frac{1}{n} i^n(x^n; y^n) \leq I(X; Y) + \varepsilon\}$

- Output distribution given codebook C: $P_{Y^n|C}(A) = \exp(-nR) \sum_{m=1}^{\exp(nR)} K^{\otimes n} (C(m), A)$

Chernoff-Hoeffding bound: Atypical part is exponentially small with doubly exponentially small error probability.
Direct Part: Proof Sketch (1)

- Typical set: $T_\varepsilon := \{(x^n, y^n) : \frac{1}{n} i(x^n; y^n) \leq I(X; Y) + \varepsilon\}$

- Output distribution given codebook C: $P_{Y^n | C}(A) = \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A)$

- Typical part: $P_{1,C}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A \cap \{y^n : (C(m), y^n) \in T_\varepsilon\})$

- Atypical part: $P_{2,C}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A \cap \{y^n : (C(m), y^n) \notin T_\varepsilon\})$
Direct Part: Proof Sketch (1)

- Typical set: $T_\varepsilon := \{(x^n, y^n) : \frac{1}{n} i(x^n; y^n) \leq I(X; Y) + \varepsilon\}$

- Output distribution given codebook \mathcal{C}: $P_{Y^n|\mathcal{C}}(A) = \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A)$

- Typical part: $P_{1,\mathcal{C}}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A \cap \{y^n : (C(m), y^n) \in T_\varepsilon\})$

- Atypical part: $P_{2,\mathcal{C}}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^\otimes n (C(m), A \cap \{y^n : (C(m), y^n) \notin T_\varepsilon\})$

$$\|P_{Y^n|\mathcal{C}} - Q_{Y^n}\|_{TV} = \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{Y^n|\mathcal{C}}}{dQ_{Y^n}} (Y^n) - 1 \right]^+ = \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{1,\mathcal{C}}}{dQ_{Y^n}} (Y^n) + \frac{dP_{2,\mathcal{C}}}{dQ_{Y^n}} (Y^n) - 1 \right]^+$$

$$\leq \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{1,\mathcal{C}}}{dQ_{Y^n}} (Y^n) - 1 \right]^+ + P_{2,\mathcal{C}}(Y^n)$$

\text{typical part} \quad \text{atypical part}
Direct Part: Proof Sketch (1)

- Typical set: \(T_{\varepsilon} := \left\{ (x^n, y^n) : \frac{1}{n} \log(x^n; y^n) \leq I(X; Y) + \varepsilon \right\} \)

- Output distribution given codebook \(\mathcal{C} \): \(P_{Y^n|C}(A) = \exp(-nR) \sum_{m=1}^{\exp(nR)} K^{\otimes n} (C(m), A) \)

- Typical part: \(P_{1,C}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^{\otimes n} (C(m), A \cap \{ y^n : (C(m), y^n) \in T_{\varepsilon} \}) \)

- Atypical part: \(P_{2,C}(A) := \exp(-nR) \sum_{m=1}^{\exp(nR)} K^{\otimes n} (C(m), A \cap \{ y^n : (C(m), y^n) \notin T_{\varepsilon} \}) \)

\[
\| P_{Y^n|C} - Q_{Y^n} \|_{TV} = \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{Y^n|C}}{dQ_{Y^n}} (Y^n) - 1 \right]^{+} = \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{1,C}}{dQ_{Y^n}} (Y^n) + \frac{dP_{2,C}}{dQ_{Y^n}} (Y^n) - 1 \right]^{+} \\
\leq \mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{1,C}}{dQ_{Y^n}} (Y^n) - 1 \right]^{+} + P_{2,C}(Y^n)
\]

- Chernoff-Hoeffding bound: Atypical part is exponentially small with doubly exponentially small error probability
Direct Part: Proof Sketch (2)

How to bound the typical part $P_C \left(\mathbb{E}_{Q^n_{Y^n}} \left[\frac{dP_{1,C}}{dQ^n_{Y^n}}(y^n) - 1 \right]^+ > \delta \right)$?

Finite \mathcal{Y}

P. Cuff: Soft Covering with High Probability, ISIT 2016

Not necessarily finite \mathcal{Y}
Direct Part: Proof Sketch (2)

How to bound the typical part $P_C \left(\mathbb{E}_{Q^n} \left\{ \frac{dP_{1,C}}{dQ^n}(y^n) - 1 \right\}^+ > \delta \right) > \delta$?

Finite \mathcal{Y}

P. Cuff: Soft Covering with High Probability, ISIT 2016

Not necessarily finite \mathcal{Y}

Step 1: Eliminate $[\cdot]^+$ (since $\delta > 0$)

$P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)$
Direct Part: Proof Sketch (2)

How to bound the typical part $P_C \left(\underbrace{\mathbb{E}_{Q^n} \left[\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) - 1 \right]}_{f(C, y^n)} > \delta \right)$?

Finite \mathcal{Y}: P. Cuff: Soft Covering with High Probability, ISIT 2016

Not necessarily finite \mathcal{Y}

Step 1: Eliminate $[\cdot]^+$ (since $\delta > 0$)

$$P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)$$

Step 2: Chernoff-Hoeffding (for any fixed y^n)

$$P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(- \frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right)$$
Direct Part: Proof Sketch (2)

How to bound the typical part $P_C \left(\sum_{y^n} \left(\mathbb{E}_{Q^n} \left(\frac{dP_{1,C}^n}{dQ^n}(y^n) \right) - 1 \right)^+ > \delta \right)$?

Finite \mathcal{Y}

Step 1: Eliminate $[\cdot]^+$ (since $\delta > 0$)

$$P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)$$

Step 2: Chernoff-Hoeffding (for any fixed y^n)

$$P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(-\frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right)$$

Step 3: Union bound

$$P_C \left(\exists y^n : \bar{f}(C, y^n) > 1 + \delta \right) \leq \sum_{y^n \in \mathcal{Y}^n} P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)$$
Direct Part: Proof Sketch (2)

How to bound the typical part $P_C \left(\mathbb{E}_{Q^n} \left[\frac{dP_{1,C}}{dQ^n}(y^n) - 1 \right]^+ > \delta \right)$?

Finite \mathcal{Y}

Step 1: Eliminate $[\cdot]^+$ (since $\delta > 0$)

$$P_C \left(f(C, y^n) > \delta \right) = P_C \left(\overline{f}(C, y^n) > 1 + \delta \right)$$

Step 2: Chernoff-Hoeffding (for any fixed y^n)

$$P_C \left(\overline{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(- \frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right)$$

Step 3: Union bound

$$P_C \left(\exists y^n : \overline{f}(C, y^n) > 1 + \delta \right) \leq \sum_{y^n \in \mathcal{Y}} P_C \left(\overline{f}(C, y^n) > 1 + \delta \right)$$

Step 4: Infer bound on expectation

Not necessarily finite \mathcal{Y}

Finite \mathcal{Y}

P. Cuff: Soft Covering with High Probability, ISIT 2016

Not necessarily finite \mathcal{Y}
Direct Part: Proof Sketch (2)

How to bound the typical part \(P_C \left(\mathbb{E}_{Q_{Y^n}} \left[\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) - 1 \right]^+ > \delta \right) \)?

Finite \(\mathcal{Y} \)

Step 1: Eliminate \([\cdot]^+ \) (since \(\delta > 0 \))
\[
P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)
\]

Step 2: Chernoff-Hoeffding (for any fixed \(y^n \))
\[
P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(-\frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right)
\]

Step 3: Union bound
\[
P_C \left(\exists y^n : \bar{f}(C, y^n) > 1 + \delta \right) \leq \sum_{y^n \in \mathcal{Y}^n} P_C \left(\bar{f}(C, y^n) > 1 + \delta \right)
\]

Step 4: Infer bound on expectation

Not necessarily finite \(\mathcal{Y} \)

Step 1: As in finite case
Step 2: As in finite case
Direct Part: Proof Sketch (2)

How to bound the typical part \(P_C \left(\mathbb{E}_{Q^n} \left[\min \left\{ \frac{dP_1,C}{dQ^n}(y^n) - 1, 0 \right\}^+ > \delta \right] \right) ? \)

<table>
<thead>
<tr>
<th>Finite (\mathcal{Y})</th>
<th>Not necessarily finite (\mathcal{Y})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1: Eliminate ([\cdot]^+) (since (\delta > 0))</td>
<td>Step 1: As in finite case</td>
</tr>
<tr>
<td>(P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right))</td>
<td>Step 2: As in finite case</td>
</tr>
<tr>
<td>Step 2: Chernoff-Hoeffding (for any fixed (y^n))</td>
<td>Step 3: For r.v. (A \geq 0): (\mathbb{E}A = \int_0^{\infty} P(A > a)da)</td>
</tr>
<tr>
<td>(P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(-\frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right))</td>
<td>Step 2: As in finite case</td>
</tr>
<tr>
<td>Step 3: Union bound</td>
<td>Step 3: For r.v. (A \geq 0): (\mathbb{E}A = \int_0^{\infty} P(A > a)da)</td>
</tr>
<tr>
<td>(P_C \left(\exists y^n : \bar{f}(C, y^n) > 1 + \delta \right))</td>
<td>Step 3: For r.v. (A \geq 0): (\mathbb{E}A = \int_0^{\infty} P(A > a)da)</td>
</tr>
<tr>
<td>(\leq \sum_{y^n \in \mathcal{Y}^n} P_C \left(\bar{f}(C, y^n) > 1 + \delta \right))</td>
<td>Step 4: Infer bound on expectation</td>
</tr>
</tbody>
</table>

Step 4: Infer bound on expectation
Direct Part: Proof Sketch (2)

How to bound the typical part \(P_C \left(\mathbb{E}_{Q^n} \left[\frac{dP_1,C}{dQ^n}(y^n) - 1 \right]^+ > \delta \right) ? \)

\[
\begin{aligned}
&f(C, y^n) \\
&\bar{f}(C, y^n) \\
&\mathbb{E}_{Q^n} \left[\frac{dP_1,C}{dQ^n}(y^n) - 1 \right]^+ > \delta
\end{aligned}
\]

Finite \(\mathcal{Y} \)
P. Cuff: Soft Covering with High Probability, ISIT 2016

Not necessarily finite \(\mathcal{Y} \)

Step 1: Eliminate \([\cdot]^+ \) (since \(\delta > 0 \))

\[P_C \left(f(C, y^n) > \delta \right) = P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \]

Step 2: Chernoff-Hoeffding (for any fixed \(y^n \))

\[P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \leq \exp \left(-\frac{\delta^2}{2 \left(1 + \frac{\delta}{3} \right)} \right) \]

Step 3: Union bound

\[P_C \left(\exists y^n : \bar{f}(C, y^n) > 1 + \delta \right) \leq \sum_{y^n \in \mathcal{Y}^n} P_C \left(\bar{f}(C, y^n) > 1 + \delta \right) \]

Step 4: Infer bound on expectation

\[\mathbb{E}_{Q^n} f(C, y^n) \leq \mathbb{E}_{Q^n} \mathbb{E}_{P_C} \left(\exp(\lambda f(C, y^n)) \right) \exp(-\delta \lambda) \]

Step 1: As in finite case

Step 2: As in finite case

Step 3: For r.v. \(A \geq 0 \):

\[\mathbb{E}A = \int_0^\infty \mathbb{P}(A > a) \, da \]

Step 4: Apply Chernoff bound, Jensen, Fubini

\[P_C \left(\mathbb{E}_{Q^n} f(C, y^n) > \delta \right) \leq \mathbb{E}_{Q^n} \mathbb{E}_{P_C} \left(\exp(\lambda f(C, y^n)) \right) \exp(-\delta \lambda) \]
Direct Part: Proof Sketch (3)

Chernoff-Hoeffding bound:

- For fixed, but arbitrary y^n, we have $P_C \left(\frac{dP_{1,C}}{dQ_{Y^n}} (y^n) > (1 + \xi) \right) \leq \exp \left(-\frac{\xi^2}{2(1 + \frac{\xi^3}{3})} \right)$

$$E_{P_C} \left(\exp \left(\lambda \left[\frac{dP_{1,C}}{dQ_{Y^n}} (y^n) - 1 \right]^+ \right) \right) = \int_0^\infty P_C \left(\exp \left(\lambda \left[\frac{dP_{1,C}}{dQ_{Y^n}} (y^n) - 1 \right]^+ \right) > a \right) da$$

$$\leq 1 + \int_1^\infty P_C \left(\frac{dP_{1,C}}{dQ_{Y^n}} (y^n) > 1 + \frac{\log(a)}{\lambda} \right) da$$
Direct Part: Proof Sketch (3)

Chernoff-Hoeffding bound:

- For fixed, but arbitrary \(y^n \), we have

\[
P_C \left(\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) > (1 + \xi) \right) \leq \exp \left(-\frac{\xi^2}{2(1 + \frac{\xi}{3})} \right)
\]

\[
\mathbb{E}_{P_C} \left(\exp \left(\lambda \left[\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) - 1 \right]^+ \right) \right) = \int_0^\infty P_C \left(\exp \left(\lambda \left[\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) - 1 \right]^+ \right) > a \right) \, da
\]

\[
\leq 1 + \int_1^\infty P_C \left(\frac{dP_{1,C}}{dQ_{Y^n}}(y^n) > 1 + \frac{\log(a)}{\lambda} \right) \, da
\]

Split integration domain into two parts to bound integral:

- \(a \in [1, \exp(\lambda)] \), i.e. \(\xi \in [0, 1] \)
- \(a \in [\exp(\lambda), \infty) \), i.e. \(\xi \in [1, \infty) \)

Integrals over upper bound can be calculated

Resulting bound independent of \(y^n \); i.e. is also a bound for the expectation
Direct Part

Second-order Theorem

Let $Q := 1 - \Phi$ with Φ the distribution function of the standard normal density and suppose

- $i(X; Y)$ has finite central second moment V and finite absolute third moment ρ
- $\xi > 0$, $c > 1$ and a rate $R = I(X; Y) + \sqrt{V/n}Q^{-1}(\xi) + c \log n/n$ are given
- $d \in (0, c - 1)$ and a block length n satisfying $n^{(c-d)/2} \geq 6$ are given

Then, we have

$$P_C \left(\| P_{Y^n|C} - Q_{Y^n} \|_{TV} > \mu \left(1 + \frac{1}{\sqrt{n}} \right) + \frac{1}{\sqrt{n}} \right)$$

$$\leq \exp \left(-\frac{1}{3} n\mu \exp(nR) \right) + \left(\frac{7}{6} + \sqrt{3\pi/2} \exp \left(\frac{3}{4} \right) \right) \exp \left(-n^{1/(2(c-d-1))} \right),$$

where $\mu := Q \left(Q^{-1}(\xi) + d \log n/\sqrt{nV} \right) + \rho/(V^{3/2}\sqrt{n})$ tends to ξ for $n \to \infty$.

Resolvability on Continuous Alphabets | Matthias Frey, Igor Bjelaković and Sławomir Stańczak | Supported by the German Research Foundation and the German Federal Ministry of Education and Research
Page 9
Converse Part

Theorem

Let Q_Y be an output distribution and $(C_\ell)_{\ell \geq 1}$ a sequence of codebooks with strictly increasing block lengths n_ℓ and fixed rate R such that $\|P_{Y^n_{\ell}}|_{C_{\ell}} - Q_{Y^n_{\ell}}\|_{TV} = \delta_\ell \leq 1/4$ with $\delta_\ell \to 0$. Suppose

- \mathcal{X} is compact
- for each $A \subseteq \mathcal{Y}$, $x \mapsto K(x, A)$ is a continuous mapping

Then there is $Q_{X,Y}$ compatible with Q_Y and K such that $I_{Q_{X,Y}}(X; Y) \leq R$.

Resolvability on Continuous Alphabets | Matthias Frey, Igor Bjelaković and Sławomir Stańczak | Supported by the German Research Foundation and the German Federal Ministry of Education and Research
Page 10
Converse Part: Discrete Version

Lemma

Let Q_Y be an output distribution and $(C_\ell)_{\ell \geq 1}$ a sequence of codebooks with strictly increasing block lengths n_ℓ and fixed rate R such that $\| P_{Y^n|C_\ell} - Q_{Y^n} \|_{TV} = \delta_\ell \leq 1/4$ with $\delta_\ell \to 0$. Suppose

- \mathcal{X} is compact, \mathcal{Y} is finite and discrete
- $x \mapsto K(x, \cdot)$ is a continuous mapping from \mathcal{X} to the probability measures on \mathcal{Y}

Then there is $Q_{X,Y}$ compatible with Q_Y and K such that $I_{Q_{X,Y}}(X; Y) \leq R$.
Discrete Version of Converse Part: Proof Sketch

Define $Q_X^{(\ell)} := \frac{1}{n\ell} \sum_{k=1}^{n\ell} P_{X_k | C_{\ell}}$; consequently $Q_Y^{(\ell)} := \frac{1}{n\ell} \sum_{k=1}^{n\ell} P_{Y_k | C_{\ell}}$

Elementary manipulations, triangle inequality: $\|Q_Y^{(\ell)} - Q_Y\|_{TV} \leq \|P_{Y^{n\ell} | C_{\ell}} - Q_{Y^{n\ell}}\|_{TV} = \delta_{\ell}$
Discrete Version of Converse Part: Proof Sketch

Define $Q_X^{(\ell)} := \frac{1}{n} \sum_{k=1}^{n} P_{X_k | C_\ell}$; consequently $Q_Y^{(\ell)} := \frac{1}{n} \sum_{k=1}^{n} P_{Y_k | C_\ell}$

Elementary manipulations, triangle inequality: $\|Q_Y^{(\ell)} - Q_Y\|_{TV} \leq \|P_{Y^n | C_\ell} - Q_{Y^n}\|_{TV} = \delta_{\ell}$

$n_{\ell} R \geq H_{P_{X^n_{\ell} | C_\ell}} (X) \geq I_{P_{X^n_{\ell}, Y^n_{\ell} | C_\ell}} (X^n_{\ell}; Y^n_{\ell})$

$= n_{\ell} I_{Q_X^{(\ell)}, Y} (X; Y) - n_{\ell} H_{Q_Y^{(\ell)}} (Y) + H_{P_{Y^n_{\ell} | C_\ell}} (Y^n_{\ell})$
Discrete Version of Converse Part: Proof Sketch

Define \(Q_X^{(\ell)} := \frac{1}{n\ell} \sum_{k=1}^{n\ell} P_{X_k|C_\ell} \); consequently \(Q_Y^{(\ell)} := \frac{1}{n\ell} \sum_{k=1}^{n\ell} P_{Y_k|C_\ell} \).

Elementary manipulations, triangle inequality:
\[
\| Q_Y^{(\ell)} - Q_Y \|_{TV} \leq \| P_{Y^{n\ell}|C_\ell} - Q_{Y^{n\ell}} \|_{TV} = \delta\ell
\]

Lemma: Continuity of entropy with respect to variational distance

Let \(A \) and \(B \) be random variables on a finite alphabet \(\mathcal{A} \), distributed according to \(Q_A \) and \(Q_B \). Then, if \(\| Q_A - Q_B \|_{TV} = \delta \leq 1/4 \), we have
\[
|H(A) - H(B)| \leq -\frac{1}{2} \delta \log \frac{\delta}{2|\mathcal{A}|}.
\]
From discrete to continuous version: Sketch

\[Q^{(1,1)}_{X,Y} \cdots Q^{(\ell,1)}_{X,Y} \cdots \rightarrow Q^{(1)}_{X,Y} \text{ compatible with } K^{(1)} \text{ on } G^{(1)} \]

\[\vdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]

\[Q^{(1,k)}_{X,Y} \cdots Q^{(\ell,k)}_{X,Y} \cdots \rightarrow Q^{(k)}_{X,Y} \text{ compatible with } K^{(k)} \text{ on } G^{(k)} \]

\[\vdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \]
From discrete to continuous version: Sketch

\[Q^{(1,1)}_{X,Y} \cdots Q^{(\ell,1)}_{X,Y} \cdots \rightarrow Q^{(1)}_{X,Y} \text{ compatible with } K^{(1)} \text{ on } G^{(1)} \]

\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]

\[Q^{(1,k)}_{X,Y} \cdots Q^{(\ell,k)}_{X,Y} \cdots \rightarrow Q^{(k)}_{X,Y} \text{ compatible with } K^{(k)} \text{ on } G^{(k)} \]

\[\vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \quad \vdots \]

\[Q_{X,Y} \text{ compatible with } K \text{ on } G \]
Conclusion

- Extended resolvability results from finite alphabets to Polish spaces
 - First-order direct part, random codebooks with doubly exponentially small error probability
 - Second-order direct part
 - Converse part via discrete approximations
 - Compact input alphabet needed for converse part only

- Outlook
 - Resolvability schemes that can be practically implemented
 - Extension to MACs with continuous alphabets
 - Remove compactness assumption in converse case