TU Berlin

Department of Telecommunication SystemsPublications

Page Content

to Navigation

Preprints

T. Piotrowski and R. L. G. Cavalcante (2021). Fixed points of monotonic and (weakly) scalable neural networks. arXiv preprint arXiv:2106.16239


T. Piotrowski and R. L. G. Cavalcante (2021). The fixed point iteration of positive concave mappings converges geometrically if a fixed point exists. arXiv preprint arXiv:2110.11055


M. Frey, I. Bjelakovic and S. Stanczak (2020). Towards Secure Over-The-Air Computation. Submitted to Problems of Information Transmission. Preprint available at arXiv:2001.03174


C. Bockelmann and others (2018). Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks. Preprint (available at https://arxiv.org/abs/1804.01701)


R.L.G. Cavalcante and S. Stanczak (2018). Spectral radii of asymptotic mappings and the convergence speed of the standard fixed point algorithm. Preprint (available at https://arxiv.org/abs/1803.05671v1)


J. Fink and R. L.G. Cavalcante and P. Jung and S. Stanczak (2018). Extrapolated Projection methods for PAPR Reduction. Preprint, accepted for publication, 26th European Signal Processing Conference (EUSIPCO 2018)


D. Schaeufele and R. L.G. Cavalcante and Z. Zhong and S. Stanczak (2018). Tensor Completion for Radio Map Reconstruction and Channel Cartography using Low Rank and Smoothness. Preprint


M. Raceala-Motoc and P. Jung and Z. Utkovski and S. Stanczak (2018). C-RAN-Assisted Non-Coherent Grant-Free Random Access Based on Compute-and-Forward.


R.L.G. Cavalcante and S. Stanczak (2018). Fundamental properties of solutions to utility maximization problems in wireless networks. arXiv:1610.01988


Y. Chang and P. Jung and C. Zhou and S. Stanczak (2016). Block Compressed Sensing Based Distributed Device Detection for M2M Communications. Preprint (available at https://arxiv.org/abs/1609.05080v1)


Books

S. Stanczak and M. Wiczanowski and H. Boche (2009). Fundamentals of Resource Allocation in Wireless Networks. volume 3 of Foundations in Signal Processing, Communications and Networking. Springer, Berlin, 2009. Springer, Berlin.


S. Stanczak and M. Wiczanowski and H. Boche (2006). Resource Allocation in Wireless Networks - Theory and Algorithms. Lecture Notes in Computer Science (LNCS 4000). Springer, Berlin, 2006. Springer, Berlin.


Book Chapters

S. Stanczak and A. Keller and R.L.G. Cavalcante and N. Binder (2021). Long-term Perspectives: Machine Learning for Future Wireless Networks. Chapter 14 in: Shaping Future 6G Networks: Needs, Impacts, and Technologies. John Wiley & Sons and IEEE Press.


D. A. Awan and R.L.G. Cavalcante and M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


R. Freund, T. Haustein, M. Kasparick, K. Mahler, J. Schulz-Zander, L. Thiele, T. Wiegand, and R. Weiler (2018). 5G-Datentransport mit Höchstgeschwindigkeit. book chapter in R. Neugebauer (Ed.), "Digitalisierung: Schlüsseltechnologien für Wirtschaft und Gesellschaft" (pp. 89–111). Berlin, Heidelberg (2018)


G. Wunder, M. Kasparick, P. Jung, T. Wild, F. Schaich, Y. Chen, G. Fettweis, I. Gaspar, N. Michailow, M. Matthé, L. Mendes, D. Kténas, J.‐B. Doré, V. Berg, N. Cassiau, S. Pietrzyk, and M. Buczkowski (2016). New Physical‐layer Waveforms for 5G. book chapter in "Towards 5G: Applications, Requirements and Candidate Technologies'', Wiley, 2016, Eds. Rath Vannithamby and Shilpa Telwar


S. Maghsudi and S. Stanczak (2015). Communications in Interference-Limited Networks. chapter in Distributed Channel Selection for Underlay Device-to-Device Communications: A Game- Theoretical Learning Framework. Springer International Publishing, 2015. Springer International Publishing.


M. Goldenbaum and S. Stanczak and H. Boche (2015). Communications in Interference-Limited Networks. chapter in Interference-Aware Analog Computation over the Wireless Channel: Fundamentals and Strategies. Springer International Publishing, 2015. Springer International Publishing.


R. L. G. Cavalcante and S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.


I. Bjelakovic and H. Boche and J. Sommerfeld (2013). Capacity Results for Arbitrarily Varying Wiretap Channels. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg


I. Bjelakovic and H. Boche and G. Janen and J. Notzel (2013). Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol. 7777. Springer, Berlin, Heidelberg


S. Stanczak and H. Boche (2005). Towards a better understanding of the QoS tradeoff in multiuser multiple antenna systems. Smart Antennas–State-of-the-Art. Hindawi Publishing Corporation, 521-543.


Journal Publications

Hernangómez, Rodrigo and Visentin, Tristan and Servadei, Lorenzo and Khodabakhshandeh, Hamid and Sta'nczak, Sławomir (2022). Improving Radar Human Activity Classification Using Synthetic Data with Image Transformation. Sensors. Multidisciplinary Digital Publishing Institute, 1519.


Cioni, Stefano and Lin, Xingqin and Chamaillard, Baptiste and El Jaafari, Mohamed and Charbit, Gilles and Raschkowski, Leszek (2022). Physical layer enhancements in 5G-NR for direct access via satellite systems. International Journal of Satellite Communications and Networking


Yunyan Chang and, Peter Jung and Chan Zhou and Sławomir Stańczak (2022). Distributed ranking-based resource allocation for sporadic M2M communication. EURASIP Journal on Wireless Communications and Networking



Mbugua, Allan Wainaina and Chen, Yun and Raschkowski, Leszek and Ji, Yilin and Gharba, Mohamed and Fan, Wei (2022). Efficient Pre-Processing of Site-Specific Radio Channels for Virtual Drive Testing in Hardware Emulators. IEEE Transactions on Aerospace and Electronic Systems, 1–14.


K. Komuro and M. Yukawa and R. L. G. Cavalcante (2022). Distributed Sparse Optimization with Weakly Convex Regularizer: Consensus Promoting and Approximate Moreau Enhanced Penalties towards Global Optimality. Transactions on Signal and Information Processing over Networks


K. Komuro and M. Yukawa and R. L. G. Cavalcante (2022). Distributed Sparse Optimization with Weakly Convex Regularizer: Consensus Promoting and Approximate Moreau Enhanced Penalties towards Global Optimality. Transactions on Signal and Information Processing over Networks


Nicola Kleppmann and Johannes Dommel and Dennis Wieruch and Stefan Erben (2021). 5G and NOA: Enabling access to valuable hidden data. atp!info Magazin


M. Frey, I. Bjelakovic and S. Stanczak (2021). Over-The-Air Computation in Correlated Channels. IEEE Transactions on Signal Processing


F. Molinari, N. Agrawal, S. Stanczak and J. Raisch (2021). Max-Consensus Over Fading Wireless Channels. IEEE Transactions on Control of Network Systems, Jan. 2021


Conference, Symposium, and Workshop Papers

Predictive Resource Allocation for Automotive Applications using Interference Calculus
Citation key dk2020gc
Author D.F. Külzer and S. Stanczak and R. L.G. Cavalcante and M. Botsov
Year 2020
Journal IEEE Globecom 2020, December 7-11, in Taipei, Taiwan
Editor IEEE
Abstract In autonomous driving, several safety-related connected applications will co-exist with infotainment services for passenger entertainment. Serving the resulting set of diverse quality of service (QoS) requirements poses a tremendous challenge for future cellular networks. For example, safety-related applications require low latency, while infotainment services are associated with high throughput demands. To address the co-existence challenge, we propose a multi-cell anticipatory networking framework with interference coordination based on channel distribution information. The iterative approach first optimizes packet transmission times by so-called statistical look-ahead scheduling leveraging service properties. Interference calculus is applied for estimating the network's load in each step. Finally, packets are forwarded to an online scheduler based on the found transmission schedule. Simulations show that inter-cell interference management is crucial in provisioning the desired QoS. The iterative optimization framework offers superior transmission reliability and spectral efficiency.
Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe