direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Page Content


T. Piotrowski and R. L. G. Cavalcante (2021). Fixed points of monotonic and (weakly) scalable neural networks. arXiv preprint arXiv:2106.16239

T. Piotrowski and R. L. G. Cavalcante (2021). The fixed point iteration of positive concave mappings converges geometrically if a fixed point exists. arXiv preprint arXiv:2110.11055

M. Frey, I. Bjelakovic and S. Stanczak (2020). Towards Secure Over-The-Air Computation. Submitted to Problems of Information Transmission. Preprint available at arXiv:2001.03174

C. Bockelmann and others (2018). Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks. Preprint (available at https://arxiv.org/abs/1804.01701)

R.L.G. Cavalcante and S. Stanczak (2018). Spectral radii of asymptotic mappings and the convergence speed of the standard fixed point algorithm. Preprint (available at https://arxiv.org/abs/1803.05671v1)

J. Fink and R. L.G. Cavalcante and P. Jung and S. Stanczak (2018). Extrapolated Projection methods for PAPR Reduction. Preprint, accepted for publication, 26th European Signal Processing Conference (EUSIPCO 2018)

D. Schaeufele and R. L.G. Cavalcante and Z. Zhong and S. Stanczak (2018). Tensor Completion for Radio Map Reconstruction and Channel Cartography using Low Rank and Smoothness. Preprint

M. Raceala-Motoc and P. Jung and Z. Utkovski and S. Stanczak (2018). C-RAN-Assisted Non-Coherent Grant-Free Random Access Based on Compute-and-Forward.

R.L.G. Cavalcante and S. Stanczak (2018). Fundamental properties of solutions to utility maximization problems in wireless networks. arXiv:1610.01988

Y. Chang and P. Jung and C. Zhou and S. Stanczak (2016). Block Compressed Sensing Based Distributed Device Detection for M2M Communications. Preprint (available at https://arxiv.org/abs/1609.05080v1)


S. Stanczak and M. Wiczanowski and H. Boche (2009). Fundamentals of Resource Allocation in Wireless Networks. volume 3 of Foundations in Signal Processing, Communications and Networking. Springer, Berlin, 2009. Springer, Berlin.

S. Stanczak and M. Wiczanowski and H. Boche (2006). Resource Allocation in Wireless Networks - Theory and Algorithms. Lecture Notes in Computer Science (LNCS 4000). Springer, Berlin, 2006. Springer, Berlin.

Book Chapters

S. Stanczak and A. Keller and R.L.G. Cavalcante and N. Binder (2021). Long-term Perspectives: Machine Learning for Future Wireless Networks. Chapter 14 in: Shaping Future 6G Networks: Needs, Impacts, and Technologies. John Wiley & Sons and IEEE Press.

D. A. Awan and R.L.G. Cavalcante and M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.

R. Freund, T. Haustein, M. Kasparick, K. Mahler, J. Schulz-Zander, L. Thiele, T. Wiegand, and R. Weiler (2018). 5G-Datentransport mit Höchstgeschwindigkeit. book chapter in R. Neugebauer (Ed.), "Digitalisierung: Schlüsseltechnologien für Wirtschaft und Gesellschaft" (pp. 89–111). Berlin, Heidelberg (2018)

G. Wunder, M. Kasparick, P. Jung, T. Wild, F. Schaich, Y. Chen, G. Fettweis, I. Gaspar, N. Michailow, M. Matthé, L. Mendes, D. Kténas, J.‐B. Doré, V. Berg, N. Cassiau, S. Pietrzyk, and M. Buczkowski (2016). New Physical‐layer Waveforms for 5G. book chapter in "Towards 5G: Applications, Requirements and Candidate Technologies'', Wiley, 2016, Eds. Rath Vannithamby and Shilpa Telwar

S. Maghsudi and S. Stanczak (2015). Communications in Interference-Limited Networks. chapter in Distributed Channel Selection for Underlay Device-to-Device Communications: A Game- Theoretical Learning Framework. Springer International Publishing, 2015. Springer International Publishing.

M. Goldenbaum and S. Stanczak and H. Boche (2015). Communications in Interference-Limited Networks. chapter in Interference-Aware Analog Computation over the Wireless Channel: Fundamentals and Strategies. Springer International Publishing, 2015. Springer International Publishing.

R. L. G. Cavalcante and S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.

I. Bjelakovic and H. Boche and J. Sommerfeld (2013). Capacity Results for Arbitrarily Varying Wiretap Channels. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg

I. Bjelakovic and H. Boche and G. Janen and J. Notzel (2013). Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol. 7777. Springer, Berlin, Heidelberg

S. Stanczak and H. Boche (2005). Towards a better understanding of the QoS tradeoff in multiuser multiple antenna systems. Smart Antennas–State-of-the-Art. Hindawi Publishing Corporation, 521-543.

Journal Publications

The role of multiplex network structure in cooperation through generalized reciprocity
Citation key Utk_multi2019
Author V. Stojkoski and Z. Utkovski and E. Andre and L. Kocarev
Year 2019
Journal Physica A: Statistical Mechanics and its Applications 531:121805, June 2019
Volume 2019
Abstract Recent studies suggest that the emergence of cooperative behavior can be explained by generalized reciprocity, a behavioral mechanism based on the principle of “help anyone if helped by someone”. In complex systems, the cooperative dynamics is largely determined by the network structure which dictates the interactions among neighboring individuals. These interactions often exhibit multidimensional features, either as relationships of different types or temporal dynamics, both of which may be modeled as a “multiplex” network. Against this background, here we advance the research on cooperation models inspired by generalized reciprocity by considering a multidimensional networked society. Our results reveal that a multiplex network structure may enhance the role of generalized reciprocity in promoting cooperation, whereby some of the network dimensions act as a latent support for the others. As a result, generalized reciprocity forces the cooperative contributions of the individuals to concentrate in the dimension which is most favorable for the existence of cooperation.
Download Bibtex entry

Conference, Symposium, and Workshop Papers

Hernangómez, Rodrigo and Bjelakovic, Igor and Servadei, Lorenzo and Sta'nczak, Sławomir (2022). Unsupervised Domain Adaptation across FMCW Radar Configurations Using Margin Disparity Discrepancy. 2022 30th European Signal Processing Conference (EUSIPCO)

Kei Komuro and Masahiro Yukawa and Renato L. G. Cavalcante (2022). Distributed Sparse Optimization Based on Minimax Concave and Consensus Promoting Penalties: Towards Global Optimality. 2022 30th European Signal Processing Conference (EUSIPCO)

Fink, Jochen and Cavalcante, Renato L. G. and Utkovski, Zoran and Sta'nczak, Sławomir (2022). A Set-Theoretic Approach to MIMO Detection. ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 5328–5332.

Hernangómez, Rodrigo and Palaios, Alexandros and Guruvayoorappan, Gayathri and Kasparick, Martin and Ain, Noor Ul and Sta'nczak, Sławomir (2022). Online QoS Estimation for Vehicular Radio Environments. 2022 30th European Signal Processing Conference (EUSIPCO), 5.

Attar, M. Hossein and Taghizadeh, Omid and Chang, Kaxin and Askar, Ramez and Mehlhose, Matthias and Stanczak, Slawomir (2022). Parallel APSM for Fast and Adaptive Digital SIC in Full-Duplex Transceivers with Nonlinearity. 2022 IEEE 23rd International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)

K. Komuro and M. Yukawa and R. L. G. Cavalcante (2021). Distributed Sparse Optimization: Towards Global Optimality using Weakly Convex Regularizers. Proc. IEICE Signal Processing Symposium

D.F. Külzer, F. Debbichi, S. Stanczak and M. Botsov (2021). On Latency Prediction with Deep Learning and Passive Probing at High Mobility. IEEE International Conference on Communications (ICC) 2021, Montreal, Canada (virtual conference), in June 14-23, 2021

M. Frey, I. Bjelakovic and S. Stanczak (2021). Over-The-Air Computation in Correlated Channels. IEEE 2020 Information Theory Workshop (ITW), April 11-15, 2021

D. Schäufele, M. Kasparick, J. Schwardmann, J. Morgenroth and S. Stanczak (2021). Terminal-Side Data Rate Prediction For High-Mobility Users. IEEE 93rd Vehicular Technology Conference (VTC2021-Spring), Helsinki, Finland, April 2021

D.F. Külzer, M. Kasparick, A. Palaios, R. Sattiraju, O. D. Ramos-Cantor, D. Wieruch, H. Tchouankem, F. Göttsch, P. Geuer, J. Schwardmann, G. Fettweis, H.D. Schotten and S. Stanczak (2021). AI4Mobile: Use Cases and Challenges of AI-based QoS Prediction for High-Mobility Scenarios. IEEE Vehicular Technology Conference (VTC Spring) 2021, April 25-28, in Helsinki, Finland

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized web analytics. More information and opt-out options under data protection.