direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Preprints

M. Frey, I. Bjelakovic and S. Stanczak (2021). Over-The-Air Computation in Correlated Channels. Submitted to IEEE Transactions on Signal Processing. Final version available at arXiv:2101.04690


M. Frey, I. Bjelakovic and S. Stanczak (2020). Towards Secure Over-The-Air Computation. Submitted to IEEE Transactions on Information Forensics and Security. Preprint available at arXiv:2001.03174


Books

S. Stanczak, M. Wiczanowski and H. Boche (2009). Fundamentals of Resource Allocation in Wireless Networks. volume 3 of Foundations in Signal Processing, Communications and Networking. Springer, Berlin, 2009. Springer, Berlin.


S. Stanczak, M. Wiczanowski and H. Boche (2006). Resource Allocation in Wireless Networks - Theory and Algorithms. Lecture Notes in Computer Science (LNCS 4000). Springer, Berlin, 2006. Springer, Berlin.


Book Chapters

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


R. Freund, T. Haustein, M. Kasparick, K. Mahler, J. Schulz-Zander, L. Thiele, T. Wiegand, and R. Weiler (2018). 5G-Datentransport mit Höchstgeschwindigkeit. book chapter in R. Neugebauer (Ed.), "Digitalisierung: Schlüsseltechnologien für Wirtschaft und Gesellschaft" (pp. 89–111). Berlin, Heidelberg (2018)


G. Wunder, M. Kasparick, P. Jung, T. Wild, F. Schaich, Y. Chen, G. Fettweis, I. Gaspar, N. Michailow, M. Matthé, L. Mendes, D. Kténas, J.‐B. Doré, V. Berg, N. Cassiau, S. Pietrzyk, and M. Buczkowski (2016). New Physical‐layer Waveforms for 5G. book chapter in "Towards 5G: Applications, Requirements and Candidate Technologies'', Wiley, 2016, Eds. Rath Vannithamby and Shilpa Telwar


S. Maghsudi and S. Stanczak (2015). Communications in Interference-Limited Networks. chapter Distributed Channel Selection for Underlay Device-to-Device Communications: A Game- Theoretical Learning Framework. Springer International Publishing, 2015. Springer International Publishing.


M. Goldenbaum, S. Stanczak and H. Boche (2015). Communications in Interference-Limited Networks. chapter Interference-Aware Analog Computation over the Wireless Channel: Fundamentals and Strategies. Springer International Publishing, 2015. Springer International Publishing.


R. L. G. Cavalcante, S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.


I. Bjelakovic, H. Boche and J. Sommerfeld (2013). Capacity Results for Arbitrarily Varying Wiretap Channels. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol 7777. Springer, Berlin, Heidelberg


I. Bjelakovic, H. Boche, G. Janen and J. Notzel (2013). Arbitrarily Varying and Compound Classical-Quantum Channels and a Note on Quantum Zero-Error Capacities. In: Aydinian H., Cicalese F., Deppe C. (eds) Information Theory, Combinatorics, and Search Theory. Lecture Notes in Computer Science, vol. 7777. Springer, Berlin, Heidelberg


S. Stanczak and H. Boche (2005). Towards a better understanding of the QoS tradeoff in multiuser multiple antenna systems. Smart Antennas–State-of-the-Art. Hindawi Publishing Corporation, 521-543.


Journal Publications

M. A. Gutierrez-Estevez, M. Kasparick and S. Stanczak (2021). Online Learning of Any-to-Any Path Loss Maps. IEEE Communications Letters


J. Dommel, Z. Utkovski, O. Simeone and S. Stanczak (2021). Joint Source-Channel Coding for Semantics-Aware Grant-Free Radio Access in IoT Fog Networks. IEEE Signal Processing Letters


F. Molinari, N. Agrawal, S. Stanczak and J. Raisch (2021). Max-Consensus Over Fading Wireless Channels. IEEE Transactions on Control of Network Systems, Jan. 2021


A. Pfadler, C. Ballesteros, J. Romeu and L. Jofre (2020). Hybrid Massive MIMO for Urban V2I: Sub-6 GHz vs mmWave Performance Assessment. IEEE Transactions on Vehicular Technology, 27 May 2020, pp. 4652-4662.


D. A. Awan, R. L.G. Cavalcante and S. Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set. IEEE Transactions on Signal Processing (TSP), 68:270-283.


R. Hernangómez, A. Santra and S. Stanczak (2020). A Study on Feature Processing Schemes for Deep-Learning-Based Human Activity Classification Using Frequency-Modulated Continuous-Wave Radar. IET Radar, Sonar & Navigation, Volume 14, Issue 7, July 2020, 10 pp.


C.- X. Wang, M. Di Renzo, S. Stanczak, S. Wang and E. G. Larsson (2020). Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wireless Communications (Volume 27, Issue: 1, pp. 16-23, Feb.


G. Bräutigam, R. L.G. Cavalcante, M. Kasparick, A. Keller and S. Stanczak (2020). AI and open interfaces: Key enablers for campus networks. ITU News Magazine - AI and Machine Learning in 5G, no. 5, p. 55, open access, Dec.


R. L.G. Cavalcante, Q. Liao and S. Stanczak (2019). Connections between spectral properties of asymptotic mappings and solutions to wireless network problems. IEEE Transactions on Signal Processing, Feb. 2019


V. Stojkoski, Z. Utkovski, L. Basnarkov and L. Kocarev (2019). Cooperation dynamics in the networked geometric Brownian motion. Physical Review E 99, 062312, 28 June 2019


Conference, Symposium, and Workshop Papers

Pulse-Shaped OTFS for V2X Short-Frame Communication with Tuned One-Tap Equalization
Citation key pfad2020itg
Author A. Pfadler, P. Jung and S. Stanczak
Year 2020
ISBN 978-3-8007-5200-3
Location Hamburg, Germany
Journal 24th International ITG Workshop on Smart Antennas, Poster presentation, February 18-20, 2020 in Hamburg, Germany
Month Feb.
Editor VDE
Abstract The recently proposed orthogonal time frequency and space (OTFS) waveform promises significant performance advantages for high mobility users. OTFS is a pulse-shaped multicarrier scheme with Gabor (Weyl-Heisenberg) structure and additional time-frequency (TF) spreading. The spreading of the symbols over the TF domain is utilizing the symplectic Fourier transform (SFFT). For coherent communication OTFS requires proper channel information and the use of appropriated equalizers to exploit the full spreading gain. The doubly-dispersive channel is first estimated with pilot and guard symbols placed in the delay-Doppler (DD) domain. One-tap equalization, favored due to their lower complexity, is then performed in the TF domain. However, an accurate estimation of the self-interference power is necessary to exploit full diversity with such linear equalizer. To enable short-frame vehicle-to-everything (V2X) communication, we propose to instantaneously estimate the selfinterference power using pilot and guard symbols for tuning the minimum mean square error (MMSE) equalizer. We evaluate this approach for vehicular channels generated by the geometricstatistical channel simulator Quadriga and with an OTFS transceiver architecture based on a polyphase implementation for orthogonalized Gaussian pulses. Comparing to a IEEE 802.11p compliant design, we show that in such vehicular scenarios OTFS significantly outperforms cyclic-prefix based orthogonal frequency-division multiplexing (OFDM) when instantaneously tuning the equalizer. Our results also indicate that with such an approach the promised OTFS gains can indeed be obtained with a linear equalizer.
Download Bibtex entry

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized web analytics. More information and opt-out options under data protection.