direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Daniyal Amir Awan

I have a master's degree in electrical engineering from Technical University of Berlin. I work as a research associate at TU Berlin and as a guest researcher at the Wireless Communication and Networks Department, Heinrich Hertz Institute, Berlin. My research revolves around application of optimization theory, function approximation, and machine-learning to problems in wireless communication systems. I am currently working in the following directions:

1. Set-membership & robust function approximation in dynamic wireless networks with a small sample set. 

2. Nonlinear detection for multi-user uplink using the set-membership paradigm.

3. Energy optimization in future wireless networks. 

Publications

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection [1]. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


D. A. Awan, Renato L.G. Cavalcante and Slawomir Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set [2]. IEEE Transactions on Signal Processing (TSP), 68:270-283.


M. Mehlhose, D. A. Awan, R. L.G. Cavalcante, M. Kurras and S. Stanczak (2020). Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform [3]. accepted, IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020


M. Mehlhose, D. A. Awan, R. L.G. Cavalcante, M. Kurras, S. Stanczak (2020). Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform [4]. 45th International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020, May 4-8, 2020, Barcelona, Spain (accepted demo submission)


D. A. Awan and R.L.G. Cavalcante and M. Yukawa and S. Stanczak (2018). Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach [5]. IEEE International Conference on Communications (ICC), Kansas City, MO, USA.


D. A. Awan and R.L.G. Cavalcante and S. Stanczak (2018). A Robust Machine Learning Method for Cell-Load Approximation in Wireless Networks [6]. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Alberta, Canada.


D. A. Awan, R. L.G. Cavalcante, Z. Utkovski and S. Stanczak (2018). Set-Theoretic Learning for Detection in Cell-Less C-RAN System [7]. IEEE Global Conference on Signal and Information Processing, California, USA, Nov. 26-29, 2018


D. A. Awan and R. L.G. Cavalcante and S. Stanczak (2016). Distributed RAN and backhaul optimization for energy efficient wireless networks [8]. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington , D.C., USA.


Q. Liao and D. A. Awan and S. Stanczak (2016). Joint Optimization of Coverage, Capacity and Load Balancing in Self-Organizing Networks [9]. Preprint available at: arXiv:1607.04754, 8 pages, 6 figures


This site uses Matomo [10] for anonymized web analytics. More information and opt-out options under data protection.

Daniyal Amir Awan
Wissenschaftlicher Mitarbeiter
Network Information Theory
e-mail query [11]
------ Links: ------

Zusatzinformationen / Extras

Quick Access:

Schnellnavigation zur Seite über Nummerneingabe

Auxiliary Functions

Copyright TU Berlin 2008