direkt zum Inhalt springen

direkt zum Hauptnavigationsmenü

Sie sind hier

TU Berlin

Inhalt des Dokuments

Es gibt keine deutsche Übersetzung dieser Webseite.

Daniyal Amir Awan

I have a master's degree in electrical engineering from Technical University of Berlin. I work as a research associate at TU Berlin and as a guest researcher at the Wireless Communication and Networks Department, Heinrich Hertz Institute, Berlin. My research revolves around application of optimization theory, function approximation, and machine-learning to problems in wireless communication systems. I am currently working in the following directions:

1. Set-membership & robust function approximation in dynamic wireless networks with a small sample set. 

2. Nonlinear detection for multi-user uplink using the set-membership paradigm.

3. Energy optimization in future wireless networks. 

Publications

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


D. A. Awan, Renato L.G. Cavalcante and Slawomir Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set. IEEE Transactions on Signal Processing (TSP), 68:270-283.


M. Mehlhose, D. A. Awan, R. L.G. Cavalcante, M. Kurras and S. Stanczak (2020). Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform. accepted, IEEE International Conference on Communications (ICC), Dublin, Ireland, 2020


M. Mehlhose, D. A. Awan, R. L.G. Cavalcante, M. Kurras, S. Stanczak (2020). Machine Learning-Based Adaptive Receive Filtering: Proof-of-Concept on an SDR Platform. 45th International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020, May 4-8, 2020, Barcelona, Spain (accepted demo submission)


D. A. Awan and R.L.G. Cavalcante and M. Yukawa and S. Stanczak (2018). Detection for 5G-NOMA: An Online Adaptive Machine Learning Approach. IEEE International Conference on Communications (ICC), Kansas City, MO, USA.


D. A. Awan and R.L.G. Cavalcante and S. Stanczak (2018). A Robust Machine Learning Method for Cell-Load Approximation in Wireless Networks. IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Calgary, Alberta, Canada.


D. A. Awan, R. L.G. Cavalcante, Z. Utkovski and S. Stanczak (2018). Set-Theoretic Learning for Detection in Cell-Less C-RAN System. IEEE Global Conference on Signal and Information Processing, California, USA, Nov. 26-29, 2018


D. A. Awan and R. L.G. Cavalcante and S. Stanczak (2016). Distributed RAN and backhaul optimization for energy efficient wireless networks. IEEE Global Conference on Signal and Information Processing (GlobalSIP), Washington , D.C., USA.


Q. Liao and D. A. Awan and S. Stanczak (2016). Joint Optimization of Coverage, Capacity and Load Balancing in Self-Organizing Networks. Preprint available at: arXiv:1607.04754, 8 pages, 6 figures


Zusatzinformationen / Extras

Direktzugang:

Schnellnavigation zur Seite über Nummerneingabe

This site uses Matomo for anonymized web analytics. More information and opt-out options under data protection.

Contact

Daniyal Amir Awan
Wissenschaftlicher Mitarbeiter
Network Information Theory NetIT
HFT 6-1