TU Berlin

Department of Telecommunication SystemsDr. Renato L. G. Cavalcante

Page Content

to Navigation

Dr. Renato L. G. Cavalcante

R. L. G. Cavalcante received the electronics engineering degree from the Instituto Tecnologico de Aeronautica (ITA), Brazil, in 2002, and the M.E. and Ph.D. degrees in Communications and Integrated Systems from the Tokyo Institute of Technology, Japan, in 2006 and 2008, respectively. From April 2003 to April 2008, he was a recipient of the Japanese Government (MEXT) Scholarship. He is currently a Research Fellow with the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Berlin, Germany. Previously, he held appointments as a Research Fellow with the University of Southampton, Southampton, U.K., and as a Research Associate with the University of Edinburgh, Edinburgh, U.K.

Dr. Cavalcante received the Excellent Paper Award from the IEICE in 2006 and the IEEE Signal Processing Society (Japan Chapter) Student Paper Award in 2008. He also co-authored the study that received the 2012 IEEE SPAWC Best Student Paper Award. His current interests are in signal processing for distributed systems, multiagent systems, convex analysis, machine learning, and wireless communications.

Click here for visiting his website

Book Chapters

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.

R. L. G. Cavalcante, S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.

Journal Publications

D. A. Awan, R. L.G. Cavalcante and S. Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set. IEEE Transactions on Signal Processing (TSP), 68:270-283.

G. Bräutigam, R. L.G. Cavalcante, M. Kasparick, A. Keller and S. Stanczak (2020). AI and open interfaces: Key enablers for campus networks. ITU News Magazine - AI and Machine Learning in 5G, no. 5, p. 55, open access, Dec.

R. L.G. Cavalcante, Q. Liao and S. Stanczak (2019). Connections between spectral properties of asymptotic mappings and solutions to wireless network problems. IEEE Transactions on Signal Processing, Feb. 2019

B.-S. Shin, M. Yukawa, R. L. G. Cavalcante and A. Dekorsy (2018). Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks. IEEE Transactions on Signal Processing, 5505-5519.

R.L.G. Cavalcante, M. Kasparick and S. Stanczak (2017). Max-Min Utility Optimization in Load Coupled Interference Networks. IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 705-716, Feb. 2017

Qi Liao and R. L. G. Cavalcante (2017). Improving Resource Efficiency with Partial Resource Muting for Future Wireless Networks. Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct. 2017

R.L.G. Cavalcante, S. Stanczak, J. Zhang and H. Zhuang (2016). Low complexity iterative algorithms for power estimation in ultra-dense load coupled networks. IEEE Trans. Signal Processing, vol. 64, no. 22, pp. 6058-6070, Nov. 2016

R.L.G. Cavalcante and Y. Shen and S. Stanczak (2016). Elementary Properties of Positive Concave Mappings With Applications to Network Planning and Optimization. IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1774-1783, April 2016

E. Pollakis, R.L.G. Cavalcante and S. Stanczak (2016). Traffic Demand-Aware Topology Control for Enhanced Energy-Efficiency of Cellular Networks. EURASIP Journal on Wireless Communications and Networks, vol. 2016, no. 1, pp. 1-17, Feb. 2016

M. Kasparick and R. L. G. Cavalcante and S. Valentin and S. Stanczak and M. Yukawa (2015). Kernel-Based Adaptive Online Reconstruction of Coverage Maps With Side Information. IEEE Transactions on Vehicular Technology, vol. 65, no. 7, pp. 5461-5473, July 2016 (also available at http://arxiv.org/abs/1404.0979)

R. Cavalcante and S. Stanczak and M. Schubert and A. Eisenblätter and U. Türke (2014). Toward Energy-Efficient 5G Wireless Communications Technologies. IEEE Signal Processing Magazine, vol. 31, no. 6, pp. 24-34, Nov. 2014

M. Vasirani, R. Kota, R. L. G. Cavalcante, S. Ossowski and N. R. Jennings (2013). An Agent-Based Approach to Virtual Power Plants of Wind Power Generators and Electric Vehicles. IEEE Transactions on Smart Grid , vol. 4, no. 3, pp. 1314-1322, Sept. 2013

R.L.G. Cavalcante and S. Stanczak (2013). A Distributed Subgradient Method for Dynamic Convex Optimization Problems under Noisy Information Exchange. IEEE Journal of Selected Topics in Signal Processing, vol. 7, no. 2, pp. 243-256, April 2013

R. L. G. Cavalcante, A. Rogers, N. R. Jennings and I. Yamada (2011). Distributed Asymptotic Minimization of Sequences of Convex Functions by a Broadcast Adaptive Subgradient Method. IEEE Journal of Selected Topics in Signal Processing, vol. 5, no. 4, pp. 739-753, Aug. 2011

R. L. G. Cavalcante and B. Mulgrew (2010). Adaptive filter algorithms for accelerated discrete-time consensus. IEEE Trans. Signal Processing, vol. 58, no. 3, pp. 1049-1058, March 2010

Conference, Symposium, and Workshop Papers

Predictive Resource Allocation for Automotive Applications using Interference Calculus
Citation key dk2020gc
Author D.F. Külzer, S. Stanczak, R. L.G. Cavalcante and M. Botsov
Year 2020
Journal IEEE Globecom 2020, December 7-11, in Taipei, Taiwan
Editor IEEE
Abstract In autonomous driving, several safety-related connected applications will co-exist with infotainment services for passenger entertainment. Serving the resulting set of diverse quality of service (QoS) requirements poses a tremendous challenge for future cellular networks. For example, safety-related applications require low latency, while infotainment services are associated with high throughput demands. To address the co-existence challenge, we propose a multi-cell anticipatory networking framework with interference coordination based on channel distribution information. The iterative approach first optimizes packet transmission times by so-called statistical look-ahead scheduling leveraging service properties. Interference calculus is applied for estimating the network's load in each step. Finally, packets are forwarded to an online scheduler based on the found transmission schedule. Simulations show that inter-cell interference management is crucial in provisioning the desired QoS. The iterative optimization framework offers superior transmission reliability and spectral efficiency.
Download Bibtex entry


Quick Access

Schnellnavigation zur Seite über Nummerneingabe