TU Berlin

Department of Telecommunication SystemsDr. Renato L. G. Cavalcante

Page Content

to Navigation

Dr. Renato L. G. Cavalcante

R. L. G. Cavalcante received the electronics engineering degree from the Instituto Tecnologico de Aeronautica (ITA), Brazil, in 2002, and the M.E. and Ph.D. degrees in Communications and Integrated Systems from the Tokyo Institute of Technology, Japan, in 2006 and 2008, respectively. From April 2003 to April 2008, he was a recipient of the Japanese Government (MEXT) Scholarship. He is currently a Research Fellow with the Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, Berlin, Germany. Previously, he held appointments as a Research Fellow with the University of Southampton, Southampton, U.K., and as a Research Associate with the University of Edinburgh, Edinburgh, U.K.

Dr. Cavalcante received the Excellent Paper Award from the IEICE in 2006 and the IEEE Signal Processing Society (Japan Chapter) Student Paper Award in 2008. He also co-authored the study that received the 2012 IEEE SPAWC Best Student Paper Award. His current interests are in signal processing for distributed systems, multiagent systems, convex analysis, machine learning, and wireless communications.

Click here for visiting his website

Book Chapters

S. Stanczak and A. Keller and R.L.G. Cavalcante and N. Binder (2021). Long-term Perspectives: Machine Learning for Future Wireless Networks. Chapter 14 in: Shaping Future 6G Networks: Needs, Impacts, and Technologies. John Wiley & Sons and IEEE Press.


D. A. Awan and R.L.G. Cavalcante and M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


R. L. G. Cavalcante and S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.


Journal Publications


K. Komuro and M. Yukawa and R. L. G. Cavalcante (2022). Distributed Sparse Optimization with Weakly Convex Regularizer: Consensus Promoting and Approximate Moreau Enhanced Penalties towards Global Optimality. Transactions on Signal and Information Processing over Networks


K. Komuro and M. Yukawa and R. L. G. Cavalcante (2022). Distributed Sparse Optimization with Weakly Convex Regularizer: Consensus Promoting and Approximate Moreau Enhanced Penalties towards Global Optimality. Transactions on Signal and Information Processing over Networks


Miretti, Lorenzo and Cavalcante, Renato L.G. and Stanczak, Slawomir (2021). Channel Covariance Conversion and Modelling Using Infinite Dimensional Hilbert Spaces. IEEE Transactions on Signal Processing. IEEE, 3145–3159.


Miretti, Lorenzo and Cavalcante, Renato Luis Garrido and Stanczak, Slawomir (2021). Channel Covariance Conversion and Modelling Using Infinite Dimensional Hilbert Spaces. IEEE Transactions on Signal Processing. IEEE, 3145–3159.


D. A. Awan and R. L.G. Cavalcante and S. Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set. IEEE Transactions on Signal Processing (TSP), 68:270-283.


G. Bräutigam, R. L.G. Cavalcante, M. Kasparick, A. Keller and S. Stanczak (2020). AI and open interfaces: Key enablers for campus networks. ITU News Magazine - AI and Machine Learning in 5G, no. 5, p. 55, open access, Dec.


R.L.G. Cavalcante and Q. Liao and S. Stanczak (2019). Connections between spectral properties of asymptotic mappings and solutions to wireless network problems. IEEE Transactions on Signal Processing, Feb. 2019


B.-S. Shin and M. Yukawa and R. L. G. Cavalcante and A. Dekorsy (2018). Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks. IEEE Transactions on Signal Processing, 5505-5519.


B.-S. Shin and M. Yukawa and R. L. G. Cavalcante and A. Dekorsy (2018). Distributed Adaptive Learning with Multiple Kernels in Diffusion Networks. IEEE Transactions on Signal Processing, to appear. Preprint available at arXiv:1801.07087


R.L.G. Cavalcante, M. Kasparick and S. Stanczak (2017). Max-Min Utility Optimization in Load Coupled Interference Networks. IEEE Transactions on Wireless Communications, vol. 16, no. 2, pp. 705-716, Feb. 2017


Qi Liao and R. L. G. Cavalcante (2017). Improving Resource Efficiency with Partial Resource Muting for Future Wireless Networks. Proc. IEEE International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), Oct. 2017


R.L.G. Cavalcante and S. Stanczak and J. Zhang and H. Zhuang (2016). Low complexity iterative algorithms for power estimation in ultra-dense load coupled networks. IEEE Trans. Signal Processing, vol. 64, no. 22, pp. 6058-6070, Nov. 2016


R.L.G. Cavalcante and Y. Shen and S. Stanczak (2016). Elementary Properties of Positive Concave Mappings With Applications to Network Planning and Optimization. IEEE Trans. Signal Processing, vol. 64, no. 7, pp. 1774-1783, April 2016


E. Pollakis and R.L.G. Cavalcante and S. Stanczak (2016). Traffic Demand-Aware Topology Control for Enhanced Energy-Efficiency of Cellular Networks. EURASIP Journal on Wireless Communications and Networks, vol. 2016, no. 1, pp. 1-17, Feb. 2016


Conference, Symposium, and Workshop Papers

A hybrid model-data driven approach for the estimation of the angular power spectrum in massive MIMO systems
Citation key Ren2020SSP
Author R. L. G. Cavalcante and S. Stanczak
Year 2020
Journal IEEE Statistical Signal Processing Workshop 2020, Rio de Janeiro, Brazil, 12th-15th July, 2020 (to appear)
Abstract Information about the angular power spectra (APS) of signals impinging on antenna arrays have important applications in massive MIMO systems such as user clustering, angle-of-arrival estimation, and channel covariance estimation in FDD systems, to cite a few. Current approaches for the estimation of APS can be divided into two main groups: model based methods and data driven methods. The former methods are able to produce reliable estimates with little side information and no training , but they do not exploit any information from datasets (if available) to improve the estimates. In contrast, pure data-driven methods can provided good performance without any knowledge about physical models, but they do not provide any guarantees of robustness against sudden changes in the propagation environment, a common occurrence in wireless systems. Against this background, we propose novel hybrid model and data driven algorithms that use both information about models and any available dataset. To this end, we modify projection and optimization methods for APS estimation by using an inner product (and hence the induced norm and metric) that is learned from data. The proposed algorithms are able to produce reliable estimates that exploit both statistical information available in datasets and model knowledge. As a result, they are able to provide robustness against relatively large changes in the propagation environment without the need to perform frequent training.
Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe