TU Berlin

Department of Telecommunication SystemsProf. Dr.-Ing. Slawomir Stanczak

Page Content

to Navigation

Prof. Dr.-Ing. Slawomir Stanczak

Lupe

Slawomir Stanczak studied electrical engineering with specialization in control theory at the Wroclaw University of Technology and at the Technical University of Berlin (TU Berlin). He received the Dipl.-Ing. degree in 1998 and the Dr.-Ing. degree (summa cum laude) in electrical engineering in 2003, both from TU Berlin; the Habilitation degree (venialegendi) followed in 2006. Since 2015, he has been a Full Professor for network information theory with TU Berlin and the head of the Wireless Communications and Networks department. Prof. Stanczak is a co-author of two books and more than 200 peer-reviewed journal articles and conference papers in the area of information theory, wireless communications, signal processing and machine learning. He was an Associate Editor of the IEEE Transactions on Signal Processing between 2012 and 2015. Since February 2018 Prof. Stanczak has been the chairman of the ITU-T focus group on machine learning for future networks including 5G.     

Teaching

  • Winter 2020/21

    • VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
    • VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)
    • VL Introduction to Game Theory with Engineering Applications (Prof. Dr.-Ing. Setareh Maghsudi)

  • Summer 2020

    • VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
    • VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
    • VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)

  • Winter 2019/20

    • VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
    • VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)

  •  Summer 2019

    • VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
    • VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
    • VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)

 

You can also find me on:

Fraunhofer Heinrich-Hertz-Institut

Google Scholar

arXiv

LinkedIn


Publications

Preprints

M. Frey, I. Bjelakovic and S. Stanczak (2021). Over-The-Air Computation in Correlated Channels. Submitted to IEEE Transactions on Signal Processing. Final version available at arXiv:2101.04690


M. Frey, I. Bjelakovic and S. Stanczak (2020). Towards Secure Over-The-Air Computation. Submitted to IEEE Transactions on Information Forensics and Security. Preprint available at arXiv:2001.03174


Books

S. Stanczak, M. Wiczanowski and H. Boche (2009). Fundamentals of Resource Allocation in Wireless Networks. volume 3 of Foundations in Signal Processing, Communications and Networking. Springer, Berlin, 2009. Springer, Berlin.


S. Stanczak, M. Wiczanowski and H. Boche (2006). Resource Allocation in Wireless Networks - Theory and Algorithms. Lecture Notes in Computer Science (LNCS 4000). Springer, Berlin, 2006. Springer, Berlin.


Book Chapters

D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak (2020). Adaptive Learning for Symbol Detection. Machine Learning for Future Wireless Communications. Wiley & IEEE Press, 15.


S. Maghsudi and S. Stanczak (2015). Communications in Interference-Limited Networks. chapter Distributed Channel Selection for Underlay Device-to-Device Communications: A Game- Theoretical Learning Framework. Springer International Publishing, 2015. Springer International Publishing.


M. Goldenbaum, S. Stanczak and H. Boche (2015). Communications in Interference-Limited Networks. chapter Interference-Aware Analog Computation over the Wireless Channel: Fundamentals and Strategies. Springer International Publishing, 2015. Springer International Publishing.


R. L. G. Cavalcante, S. Stanczak and I. Yamada (2014). Cooperative Cognitive Radios with Diffusion Networks. chapter Cognitive Radio and Sharing Unlicensed Spectrum in the book Mechanisms and Games for Dynamic Spectrum Allocation, Cambridge University Press, UK, 2014, 262-303.


S. Stanczak and H. Boche (2005). Towards a better understanding of the QoS tradeoff in multiuser multiple antenna systems. Smart Antennas–State-of-the-Art. Hindawi Publishing Corporation, 521-543.


Journal Publications

M. A. Gutierrez-Estevez, M. Kasparick and S. Stanczak (2021). Online Learning of Any-to-Any Path Loss Maps. IEEE Communications Letters


J. Dommel, Z. Utkovski, O. Simeone and S. Stanczak (2021). Joint Source-Channel Coding for Semantics-Aware Grant-Free Radio Access in IoT Fog Networks. IEEE Signal Processing Letters


F. Molinari, N. Agrawal, S. Stanczak and J. Raisch (2021). Max-Consensus Over Fading Wireless Channels. IEEE Transactions on Control of Network Systems, Jan. 2021


D. A. Awan, R. L.G. Cavalcante and S. Stanczak (2020). Robust Cell-Load Learning with a Small Sample Set. IEEE Transactions on Signal Processing (TSP), 68:270-283.


R. Hernangómez, A. Santra and S. Stanczak (2020). A Study on Feature Processing Schemes for Deep-Learning-Based Human Activity Classification Using Frequency-Modulated Continuous-Wave Radar. IET Radar, Sonar & Navigation, Volume 14, Issue 7, July 2020, 10 pp.


C.- X. Wang, M. Di Renzo, S. Stanczak, S. Wang and E. G. Larsson (2020). Artificial Intelligence Enabled Wireless Networking for 5G and Beyond: Recent Advances and Future Challenges. IEEE Wireless Communications (Volume 27, Issue: 1, pp. 16-23, Feb.


G. Bräutigam, R. L.G. Cavalcante, M. Kasparick, A. Keller and S. Stanczak (2020). AI and open interfaces: Key enablers for campus networks. ITU News Magazine - AI and Machine Learning in 5G, no. 5, p. 55, open access, Dec.


R. L.G. Cavalcante, Q. Liao and S. Stanczak (2019). Connections between spectral properties of asymptotic mappings and solutions to wireless network problems. IEEE Transactions on Signal Processing, Feb. 2019


S. Limmer and S. Stanczak (2018). A Neural Architecture for Bayesian Compressive Sensing over the Simplex via Laplace Techniques. IEEE Trans. on Signal Processing, 66(22):6002-6015, Nov. 2018.


C. Bockelmann, N. Pratas, G. Wunder, S. Saur, M. Navorro, D. Gregoratti, G. Vivier, E. de Carvalho, Y. Ji, C. Stefanovic, P. Popovski, Q. Wang, M. Schellmann, E. Kosmatos, P. Demestichas, M. Raceala-Motoc, P. Jung, S. Stanczak and A. Dekorsy (2018). Towards Massive Connectivity Support for Scalable mMTC Communications in 5G networks. IEEE Access (Volume: 6), pages 28969 - 28992, May 16, 2018


Conference, Symposium, and Workshop Papers

Full-Duplex AF MIMO Relaying: Impairments Aware Design and Performance Analysis
Citation key tgh2020Globe
Author O. Taghizadeh, S. Stanczak, H. Iimori and G. T. Freitas de Abreu
Year 2020
Location Taipei, Taiwan
Journal 2020 IEEE Global Communications Conference: Signal Processing for Communications (Globecom2020 SPC), December 7 - 11, in Taipei, Taiwan
Month dec
Editor IEEE Globecom 2020
Organization IEEE
Abstract Full-Duplex (FD) Amplify-and-Forward (AF) Multiple-Input Multiple-Output (MIMO) relaying has been the focus of several recent studies, due to the potential for achieving a higher spectral efficiency and lower latency, together with the inherent processing simplicity. However, when the impact of hardware distortions are considered, such relays suffer from a distortion-amplification loop, due to the inter-dependent nature of the relay transmit signal covariance and the residual self-interference covariance. The aforementioned behavior leads to a significant performance degradation for a system with a low or medium hardware accuracy. In this work, we analyse the relay transfer function as well as the Mean Squared-Error (MSE) performance of an FD-AF MIMO relay-assisted communication, under collective sources of additive and multiplicative transmit and receive impairments. An optimization problem is then devised over the linear transmit and receive strategies to minimize the communication MSE and solved by employing the recently proposed Penalty Dual Decomposition (PDD) method. The proposed solution converges to a stationary point of the original problem via a sequence of quadratic convex programs. Numerical simulations verify the significance of the proposed distortion-aware design compared to the common simplified approaches, as the hardware accuracy degrades.
Download Bibtex entry

Navigation

Quick Access

Schnellnavigation zur Seite über Nummerneingabe