Inhalt des Dokuments
Prof. Dr.-Ing. Slawomir Stanczak
Slawomir Stanczak studied electrical engineering with specialization in control theory at the Wroclaw University of Technology and at the Technical University of Berlin (TU Berlin). He received the Dipl.-Ing. degree in 1998 and the Dr.-Ing. degree (summa cum laude) in electrical engineering in 2003, both from TU Berlin; the Habilitation degree (venialegendi) followed in 2006. Since 2015, he has been a Full Professor for network information theory with TU Berlin and the head of the Wireless Communications and Networks department. Prof. Stanczak is a co-author of two books and more than 200 peer-reviewed journal articles and conference papers in the area of information theory, wireless communications, signal processing and machine learning. He was an Associate Editor of the IEEE Transactions on Signal Processing between 2012 and 2015. Since February 2018 Prof. Stanczak has been the chairman of the ITU-T focus group on machine learning for future networks including 5G.
Teaching
- Winter 2020/21
- VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)
- VL Introduction to Game Theory with Engineering Applications (Prof. Dr.-Ing. Setareh Maghsudi)
- Summer 2020
- VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
- VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)
- Winter 2019/20
- VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)
- Summer 2019
- VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
- VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)
You can also find me on:
Book Chapters
Citation key | AwanBoo2020 |
---|---|
Author | D. A. Awan, R.L.G. Cavalcante, M. Yukawa and S. Stanczak |
Title of Book | Machine Learning for Future Wireless Communications |
Pages | 15 |
Year | 2020 |
DOI | 10.1002/9781119562306.ch11 |
Location | New York, United States |
Month | December |
Editor | Wiley & IEEE Press |
Publisher | Wiley & IEEE Press |
Chapter | 11 |
Abstract | This chapter introduces a novel machine learning algorithm for symbol detection in multiuser environments. It considers a challenging multiuser uplink scenario in which the number of antennas available at the base station may be smaller than the number of active users. More specifically, the proposed method is an adaptive (nonlinear) receive filter that learns to detect symbols from data directly, without performing any intermediate estimation tasks (e.g. channel estimation). Furthermore, the method is robust against abrupt changes of the wireless environment. The proposed algorithms for symbol detection are based on the theory of reproducing kernel Hilbert spaces, which have been extensively used in diverse fields such as statistics, probability, signal processing, and machine learning, among others. It also discusses the adaptive learning method for symbol detection in multiuser environments. |
Zusatzinformationen / Extras
Quick Access:
Auxiliary Functions
This site uses Matomo for anonymized web analytics. More information and opt-out options under data protection.
Head of Chair
Prof. Dr.-Ing. Slawomir StanczakHFT 400a
Einsteinufer 25
10587 Berlin
Tel.: +49(0)30 314-28465
Fax: +49(0)30 314-28320
e-mail query
Website