Inhalt des Dokuments
Prof. Dr.-Ing. Slawomir Stanczak
Slawomir Stanczak studied electrical engineering with specialization in control theory at the Wroclaw University of Technology and at the Technical University of Berlin (TU Berlin). He received the Dipl.-Ing. degree in 1998 and the Dr.-Ing. degree (summa cum laude) in electrical engineering in 2003, both from TU Berlin; the Habilitation degree (venialegendi) followed in 2006. Since 2015, he has been a Full Professor for network information theory with TU Berlin and the head of the Wireless Communications and Networks department. Prof. Stanczak is a co-author of two books and more than 200 peer-reviewed journal articles and conference papers in the area of information theory, wireless communications, signal processing and machine learning. He was an Associate Editor of the IEEE Transactions on Signal Processing between 2012 and 2015. Since February 2018 Prof. Stanczak has been the chairman of the ITU-T focus group on machine learning for future networks including 5G.
Teaching
- Winter 2020/21
- VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)
- VL Introduction to Game Theory with Engineering Applications (Prof. Dr.-Ing. Setareh Maghsudi)
- Summer 2020
- VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
- VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)
- Winter 2019/20
- VL Fundamentals of Digital Wireless Communication (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Mathematical Introduction to Machine Learning (Dr. rer. nat. Igor Bjelakovic)
- Summer 2019
- VL Theory and Algorithms of Machine Learning (Prof. Dr.-Ing. Slawomir Stanczak)
- VL Modern Signal Processing and Communications (Dr. Renato L.G. Cavalcante)
- VL Selected Topics in Wireless Communications and Networking (Dr. Zoran Utkovski)
You can also find me on:
Preprints
Citation key | MatOver2020 |
---|---|
Author | M. Frey, I. Bjelakovic and S. Stanczak |
Year | 2020 |
Journal | Submitted to IEEE Transactions on Signal Processing. arXiv:2007.02648 |
Abstract | This paper presents and analyzes a one-shot coding scheme for the \glsota computation over a fast-fading multiple-access wireless channel. The assumed channel model incorporates correlations both in fading and noise over time as well as among users. The model also allows for non-Gaussian components in fading and noise, provided that the distributions are sub-Gaussian (as is the case for a sum of Gaussian and bounded random variables), rendering the proposed scheme robust to a large class of non-Gaussian interference and noise known to occur in many practical scenarios. OTA computation has a huge potential for reducing communication cost in applications such as Machine Learning (ML)-based distributed anomaly detection in large wireless sensor networks. We illustrate this potential through extensive numerical simulations. |
Zusatzinformationen / Extras
Quick Access:
Auxiliary Functions
This site uses Matomo for anonymized web analytics. More information and opt-out options under data protection.
Head of Chair
Prof. Dr.-Ing. Slawomir StanczakHFT 400a
Einsteinufer 25
10587 Berlin
Tel.: +49(0)30 314-28465
Fax: +49(0)30 314-28320
e-mail query
Website